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Non-Newtonian effects on ribbing instability threshold
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Abstract

Threshold of ribbing in a two-roll setup is investigated for non-Newtonian fluids. Two typical shear-thinning
polymeric solutions are used, the first one exhibiting inelastic properties (Xanthan), the second one viscoelastic
properties (polyacrylamide, PAAm).

The effect of polymeric concentration and thus rheological parameters on the effective critical capillary number
Ca∗ at the onset of ribbing is described. For low polymer concentrations, only a small decrease of the onset is
observed for both fluids. At larger concentrations,Ca∗ remains constant for inelastic fluids, while for the elastic
fluids, a continuous decrease up to a factor 10, with respect to the Newtonian case, is observed. Above threshold,
a strong effect on elastic properties is also observed on the amplitude of ribbing. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Ribbing instability has been largely studied both experimentally and theoretically since the early 1960s
[1–3] and a review of coating flows and its instabilities can be also found in [4]. The way a planar interface
leads to a well-defined, patterned surface above a certain threshold gives rise to detailed research in various
fields, from the photographic industry to lubrication of bearings and roll coating processes. In all cases,
its industrial importance cannot be overestimated.

Many authors have largely discussed the destabilization mechanism of the ribbing instability (see for
example [5]). For the case of Newtonian fluids, linear stability analysis has shown that it can be described
by amplitude equations, where control parameter turns out to be capillary numberCa = µV/σ , whereµ
andσ are the dynamical viscosity and surface tension, respectively, of the fluid,V being the velocity of
the moving surface. Linearization around the critical point gives rise to dispersion relation of the unstable
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modes and to marginal stability curves, having a well-defined scenario where this instability takes place
and evolves as the control parameter increases [6].

Nevertheless, although most industrial fluids (paints, agroalimentary fluids) are known to be non-
Newtonian, the effects of rheological properties on coating instabilities have been less studied and com-
plete experimental results are still missing, as can be seen in the review of non-Newtonian coating flows by
Chen [7]. Journal bearing flow with non-Newtonian liquids has been well studied, especially in the field
of lubrication. Viscoelastic journal bearing flow has been studied using a perturbation technique that leads
to several analytical results [8]. Davies and Walters [9] (for the ordered fluids), as well as Phan-Thien and
Tanner [10] (for the Criminale–Ericksen–Filbey constitutive relation), predicts the effect of viscoelasticity
on load and they also sketch a method for first normal stress measurements using journal bearings. The
related problem of parabolic slider lubrication (roll-plate geometry), for shear-thinning fluids has been
studied by Sinha and Singh [11], in order to predict load forces and pressure profiles. Dien and Elrod [12],
as well as Johnson and Mangkoesoebroto [13] (who improved earlier calculations for the case of negative
pressure gradients), studied the problem in a more general context under lubrication approximation, ren-
dering the same results. They found that, as the shear-thinning effect becomes more important, the load
decreases and the pressure gradient smoothes out. Greener and Middleman [14] studied theoretically the
effect of power-law fluids on pressure distribution along the gap between cylinders. Coyle et al. [15] also
found some numerical results on the effect of shear-thinning effects on film thickness. Both papers agree
that film thickness increases due to pressure drop in the flow, while the first extend the analysis to vis-
coelastic fluids, showing that the increase in load (and thus reduction in film thickness) can be masked out
by viscosity drop. It must be noted that Greener and Middleman [14] uses a rather ad hoc constitutive rela-
tion for its purpose. Ro and Homsy [16] predicted viscoelastic destabilizing effects due to positive normal
stress differences on diverging channels, by introducing changes in boundary conditions at the interface.

Experimental results on coating flows with non-Newtonian fluids are rare, possibly because many ex-
perimental research is directly involved with industrial research and development. Focusing on base flow,
Benkreira et al. [17] measure film thickness at the exit of a two-roll system, showing only a small increase
due to shear-thinning effects. Non-Newtonian ribbing instability has been also studied experimentally by
some authors. Baumann et al. [18] experimentally found that viscoelastic effects are responsible for an
important reduction on threshold instability, according to them due to elongational effects. Fernando and
Glass [19] conducting experiments with solutions that differs in extensional viscosity (but not in shear
viscosity) found that not only ribbing threshold is reduced, but also the wavelength of the pattern. In the
recent years, Dontula et al. [20] found destabilizing effects working with viscoelastic fluids in forward
two-roll coating device. Contrarily to the results obtained by Fernando and Glass, extensional viscosity
seems to have little influence on ribbing threshold. Grillet et al. [21] described an interfacial instability
between two concentric or non-concentric cylinders with constant viscosity elastic fluids. The observed
instability is very similar to the one to be presented in this paper, showing threshold reduction and a
peaked patterned interface. However, as they work with a large gap, gravity effect plays an important
stabilizing role which is not observed in our experiments.

All these studies provide strong evidence that rheological effects, especially viscoelasticity, plays a
major role on the development and onset of this hydrodynamic instability. In order to study the effect of
rheology on ribbing, we will use two families of polymeric solutions, with a similar shear-thinning behav-
ior but a significant difference in normal stresses. It is the aim of this work to investigate experimentally
this influence, characterizing the transition from Newtonian to non-Newtonian behavior by increasing
polymer concentration.
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2. Experimental setup

Usually, in industrial roll coating, a liquid film flows between two rotating rollers. In order to observe
precisely the meniscus shape and thus the onset of instability, our experimental setup consists of a pair of
eccentric cylinders one inside the other (journal bearing geometry), as shown in Fig. 1a, and is the same
geometry previously used by Bellon et al. [6]. Both cylinders are made of Pyrex and machined with a
precision of 0.01 mm. The outer cylinder has an outer radiusRo = 50 mm and a length of 420 mm, while
the inner one has a radiusRi = 33 mm and a length of 380 mm. Such long cylinders allow observation
far from the boundaries where end recirculations could be important. The gap between the two rolls,b0,
is adjustable, with a precision of 0.01 mm. In the present work, inner cylinder velocity is the only control
parameter. Outer cylinder speed is fixed at a much lower, positive value of 0.8 mm/s. Indeed, the outer
cannot be at rest. If it would be the case, since the polymeric solutions are partially wetting, a triple line
would be attached to the surface of the cylinder, drastically modifying meniscus position and instability
threshold.

An effective curvature can be defined for the journal bearing geometry as

1

R
= 1

Ri
− 1

Ro
.

The lengthR in this case corresponds to the radius of a plane–cylinder system sharing the same curva-

Fig. 1. (a) Sketch of the two-roll setup.Ri = 33 mm,Ro = 50 mm. Roll spacingb0 can be adjusted with a precision of 0.01 mm;
(b) picture of the meniscus above threshold for a 1000 wppm Xanthan solution. Air is on top, and the bottom line corresponds
to minimum gap position (b0 = 0.4 mm,Ca = 0.38 andV i = 160 mm/s).
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Fig. 2. Evolution of the dimensionless amplitude of the deformation of the interface as observed vs. the capillary number in the
case of a Newtonian fluid (glycerol/water solution,µ = 105 mPa s,σ = 54 mPa m) for a gapb0 = 0.4 mm and fitted by Eq. (1),
with α = 0.5.

ture. Together withb0, R defines the geometrical aspect ratioΓ = b0/R and longitudinal length scale
Λ = √

Rb0. In our experimental setupR = 97.1 mm, andΓ varied from 5× 10−4 to 10−2.
In the journal-bearing geometry, meniscus position is a function of velocities of cylinders. If the volume

of liquid present in the cell is below certain value, some starvation problems may arise [22]. To avoid
this, the volume injected to the system was set equal to 50 cm3 in all cases. Data acquisition was made by
direct visualization through the gap of the air/liquid interface, by means of a CCD camera. In this way
the complete wave form could be determined (Fig. 1b). More details about this setup and behavior of
Newtonian fluids can be found in [23].

Threshold of instability always presents subtleties and is very difficult to derive an objective method
for its determination. Coyle et al. [24] show how different approaches can lead to different results. The
method employed in this work is the determination of amplitude of ribs as a function ofCa in the vicinity
of threshold (Fig. 2). The value of amplitude is given by image analysis via meniscus position recording.
Amplitude is then fitted by a power-law:

A ∝ (Ca− Ca∗)α. (1)

From this fit, the critical capillary numberCa∗ and the exponentα are extracted. For the case of super-
critical instabilityα is known to be 0.5, considering a single wave number whose amplitude follows the
Landau equation [25].

The fluids used for the present experiments were polymeric solutions in an 85/15 wt.% glycerol/water
mixture, in order to get a higher viscosity of the solvent phase (µsol = 0.1 Pa s at 23◦C). This large viscosity
slows down the dewetting of the liquid from the slowly rotating outer cylinder. Glycerol mixtures have
the disadvantage of having a highly temperature-dependent viscosity, thus all experiences were held in a
temperature-controlled room atT = 23± 0.5 ◦C.

Two polymers were tested: the first one is a rigid rod-like polymer (Xanthan Sigma, molar weight
Mw ∼ 2 × 106), while the second is a long flexible polymer (polyacrylamide (PAAm) Floerger AP45,
Mw ∼ 12× 106). Both showed shear-thinning behavior but only the second exhibits large elastic effects.
Special care must be taken while working with ionic polymers, such as Xanthan, in order to get rid of
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ionization effects on viscosity, which may cause a rheological bias in viscosity as concentration increases
[26]. Indeed, the increase of polymer concentration introduces changes in the electrostatic interaction
between the polymer molecule and the solvent. For that reason NaCl was added to the solvent in a con-
centration of 0.4 M in order to neutralize polymer molecules. This procedure has not been followed for the
PAAm solutions, since the molecules are non-polar. Rheology of both solutions is presented in Section 3.

3. Rheology and interfacial properties

The shear viscosity, the first normal stress difference and the surface tension of these solutions have been
investigated for various concentrations. This work has been done in stationary conditions, as extensive
unsteady measurements, even if there are useful to determine the characteristic time scales of the fluids,
were beyond the scope of present work.

3.1. Apparent shear viscosity

Polymeric solutions used in this work were tested with a cone-plate Stress-Tech rheometer under
stress-controlled conditions, which allowed measure of viscosity and normal force simultaneously.
Viscosities ranged from 4 Pa s to several viscosity values for 1000 wppm in both cases.

For Xanthan, the evolution of the apparent shear viscosity is plotted versus the shear rate for different
concentrationsC (Fig. 3a). Fig. 3b presents the same plot for the PAAm solutions. Such curves are typical
of shear-thinning fluids where a constant Newtonian low-shear viscosity is followed by a power-law
dependence before reaching the viscosity of the solvent at high shear. In all cases, the curves can be
reasonably fitted by a four-parameter Carreau model [27]:

µ(γ̇ ) = µ∞ + µ0 − µ∞
(1 + (τ γ̇ )2)p/2

. (2)

γ̇ is the shear rate,µ0 andµ∞ the low and high shear Newtonian viscosities, respectively. The param-
eter τ is a characteristic time scale, that measures the scale at which shear-thinning effects becomes
important. The exponentp takes into account the power-law behavior at intermediate shear rates (µ∞ 
µ(γ̇ )  µ0). This model has been widely used especially when a good description of the viscosity is
needed under very changing shear conditions [28], as in our case. These fits are shown in Fig. 3 and the
parameters of the fit are given in Table 1 (note that the high shear viscosity has always been fixed to the
solvent viscosity, thusµ∞ = µsol). By interpolation of the data of this table, we have good description
of the apparent viscosity for any concentration and shear rate. As will be shown in Section 3.2, this is
necessary for a correct definition of the control parameterCa for the case of shear-dependent fluids. A
direct correlation can be made between Carreau and Ostwald power-law model by neglectingµ∞ and
identifying (−p) with exponent (n− 1) andµ0τ

−p with constantk: µ = kγ n−1. However, in our experi-
ments, shear rates up to 200 s−1 were achieved, for that reason the Ostwald model does not describe the
apparent viscosity of the polymeric solutions studied accurately enough.

The intrinsic viscosity [η0], as described in [29], is a measure of molecular effective size, that can
be obtained from low-shear viscosity measurements. In this way, different solutions can be compared,
putting in evidence the transition from dilute trough a semi-diluted regime. In the case of Xanthan, [η0] =
6 × 10−3 wppm−1, while for PAAm [η0] = 2.1 × 10−3 wppm−1. Despite its lower molecular weight,
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Fig. 3. Log–log plot of the apparent shear viscosity vs. the shear rateγ̇ for (a) Xanthan solutions and (b) PAAm solutions.

Xanthane solutions presents a much higher intrinsic viscosity than PAAm, since it is a rigid polymer,
having a higher effective volume fraction. However, it seems that in the case of PAAm this value might be
underestimated considering the shear-thinning effects present at concentrations below semi-dilute limit.

3.2. Normal stress

We measured also the first normal stress differenceN1 defined as

N1 = τxx − τyy, (3)

whereτ xx andτ yy are the normal components of the stress tensor parallel and transverse to the flow,
respectively. This normal stress was measured by two techniques: first with the rheometer in the cone/plane
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Table 1
Coefficients of the Carreau law for Xanthan and PAAm solutions,µ∞ = 0.1 Pa s

µ0 (Pa s) τ (s) p

Xanthan (ppm)
100 0.23 1.24 0.43
250 0.47 3.3 0.44
500 1.09 7.1 0.46
750 2.13 11.8 0.51

1000 3.70 16 0.56

PAAm (ppm)
100 0.49 43 0.30
250 1.2 35 0.34
500 2.1 20 0.42
750 5.0 78 0.39

1000 11 226 0.40

geometry by measuring the vertical force applied on the cone [28]. The second method follows from the
fact that elastic fluids present a swell when a jet of liquid drains from a small tube [30,31]. From these die
swell measurements it is possible to deduce the value ofN1 particularly for large shear rates. While for
Xanthan this value remains very small for the whole range of shear rates and concentrations (<10 Pa),
PAAm showed a significantN1 value even for the lowest concentrations (>100 wppm) (Fig. 4a). First
normal stress coefficientΨ1 = N1/γ̇

2 can be calculated from this data, remaining almost constant over a
wide range of shear rates. This is in agreement with predictions for semi-dilute polymer solutions [28].
N1 has also been measured as a function of reduced polymer concentration, at a constant shear rate of
200 s−1, close to the onset values (Fig. 4b). These results exhibit strong elastic effects in these solutions,
which will play an important role on the ribbing threshold, as will be seen in Section 4. From Fig. 4,
a characteristic time scale for each fluid can be defined via first normal stress coefficient:Ψ1 = µ0λ

(assuming a constantΨ 1, as predicted for example in the upper convected Maxwell model [32]). From
this, a Deborah number can be estimated:

De = λΩ, (4)

whereΩ is the angular frequency of the inner cylinder. This number gives an estimate of the influence
of relaxation time on the flow. In the case of PAAm,De is about 10−2 to 10−1. The time scale of stress
variations imposed to the fluid particles is long with respect to elastic time scale. Thus, one can assumes
that the fluid is always in equilibrium with local flow conditions, and that time-dependent effects are not
relevant. Similar criteria [10] have been employed to define the validity of several non-relaxing constitutive
equations on journal-bearing geometry. Weissemberg number can be defined as well:We= λγ̇ , which
measures the strength of elastic effects in the flow. A smallDe does not necessarily means smallWe. In
fact they are both related with geometrical aspect ratio, i.e.De ∼ Γ We, and sinceΓ is of order 10−3,
Wevaries between 10 and 100. AlthoughWeis a suitable measure of elasticity in a fluid, is a function of
velocity, and thus not a proper elastic parameter.

Xanthan solutions, although normal stresses are very small, also present a relaxation time related to
the orientation of polymer molecules in shearing flows. This relaxation time (according to rigid dumbbell
theory) [33], is about 0.1–1 s in our case. Deborah number for these solutions is again less than unity and
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Fig. 4. (a) Log–log plot of the first normal stress differenceN1 vs. the shear ratėγ for PAAm solution atC = 2000 ppm. Low
shear measurements (�) correspond to cone-plate measurements, high shear data (�) to die swell experiments. Hollow symbols
represent first normal stress coefficientΨ 1, which remains almost constant over a wide range of shear rates (∼0.03); (b) evolution
of N1 vs. the PAAm reduced concentration [η0]C for a shear rate of 200 s−1 ([η0] = 2.1 × 10−2 wppm−1). The lines shows the
behavior above and below semi-dilute limit.

for that reason effective viscosity has no significant memory effect, at least at the angular velocities at
which experiments were conducted.

3.3. Surface tension

Surface tension of solutions used in this work was also measured, since polymer concentration could
possibly modify the interfacial properties, which play an important role in the construction of the parameter
Ca. Surface tension was tested using the ring method with a Krüss K8 analog tensiometer. The results are
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Fig. 5. Evolution of the surface tension of the solutions vs. concentrationC.

shown as a function of polymer concentration in Fig. 5 for both fluids. First note the important reduction
in surface tension, at concentration zero, with respect to tabulated values: while for a glycerol/water
(85/15) solution at 23◦C a 64 mN/m value should be expected, a value of 54 mN/m was obtained for fluid
extracted from the experiment. This decrease may be due to contamination of the water-based solution
in the setup during experiments. Nevertheless, this value remained constant for all samples during the
experiments conducted. Xanthan presents a slight increase in surface tension with concentration, possibly
due to the ionic nature of this polymer [34]. While for inelastic solutions the ring method presents no
difficulties, great care was taken while testing PAAm, since elongational effects may shadow the interfacial
forces acting on the ring. For that reason, measurements were taken after transient effects were damped by
viscosity. Nevertheless, results are scattered around solvent valueσ = 54±2 mN/m and no distinguishable
behavior can be asserted.

In both cases, since surface tension depends only slightly on concentration, we will neglect dynamic
interfacial effects in theCaevaluation. Therefore, it will be assumed that surface tension remains constant
(σ = 54 mN/m) even if the amount of surface present below and above the instability threshold is not
the same. Aging as well as dynamic effects on surface tension for these polymeric solutions have been
studied in [35].

4. Results on instability threshold and beyond

4.1. Geometrical aspects: Ca∗ versus aspect ratio

In this section we present the experimental results obtained for the destabilization of the air–liquid
interface as a function of geometrical parameters and polymer concentration. First, however, a comment
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about how data is plotted in non-dimensional form must be stated. Usually, ribbing instability threshold is
presented by plottingCa∗ versus geometrical parameters of the system, the most used is the aspect ratio
of the system,Γ = b0/R [24]. In this way, all data can be plotted in non-dimensional form. The problem
arises here when one attempts to define capillary number. Viscosity is a function of local shear rate (as
De  1 we will neglect history effects), and since journal-bearing flow is not strictly viscometric, the
determination of viscosity in this experiment, and hence a correct evaluation of bulk forces, is not trivial
a priori. As a first order estimate, it is assumed that the effective shear rate equals a pure Couette flow at
the minimum thickness of the cell:

γ̇eff = Vi − Vo

b
≈ Vi

b
, (5)

whereVi andVo are the velocities of the inner and outer cylinders, respectively. AsV o  V i as explained
in Section 2, it will be neglected in the following. This estimation of effective shear rate is accurate in the
gap in the case of Couette-dominated flows, i.e. when pressure gradient effects are less important than
shear effects due to boundaries. It is clearly not appropriate when cylinders rotate at the same velocity
in the same direction [36] (in such a case the flow is Poiseuille-dominated, and it is then possible to
estimate a mean shear rate as is done for power-law fluids flowing in Hele-Shaw cells [37,38]). A more
physical evaluation oḟγeff would be to do the estimation at the meniscus position, but its position at
threshold varies for each liquid. However, looking at the scales involved in our experiments, the flow
might be considered viscometric since shear rate is only reduced by a factor two near meniscus position.
The subsequent increase in viscosity is not significant near critical condition. Finally, evaluatingµ(γ̇eff)

via Eq. (5), and assuming a constant surface tension, an effective capillary number can be expressed as

Caeff = µ(γ̇eff)
Vi

σ
. (6)

In the following, we shall drop the index inCafor simplicity. In this way, data for the onset versus the aspect
ratio obtained in different configurations for non-Newtonian fluids can be compared with Newtonian
results using a log–log representation (Fig. 6a). Data obtained from inelastic solutions, show no strong
difference with respect to Newtonian behavior, even for high polymer concentration (2000 wppm), at
which shear-dependent viscosity has a very important effect. For the case of PAAm solutions, a strong
reduction on instability threshold is found. Assuming a linear dependence on aspect ratioCa∗ ∝ Γ ,
proportionality constant drops from the Newtonian value of 38 to a value 4 for PAAm.

For comparison purpose, data obtained by other authors is plotted in Fig. 6b. Note that the results of
Grillet et al. [21] as well as Bauman et al. [18] correspond to higher aspect ratios (10−2 to 10−1), while
Coyle et al. [24], and Dontula et al. [20] actually overlap our results. Nevertheless, all this data evidences
the strong destabilizing effect of viscoelasticity.

4.2. Effect of polymer concentration: Ca∗ versus C

The results shown in Section 4.1 highlight the strong influence of flexible polymers on threshold insta-
bility. For this reason, it is important to investigate the effect of concentration of polymer, especially for
the viscoelastic case, and to determine the transition from highly concentrated solution to the Newtonian
case. The gap was fixed atb0 = 0.4 mm and thus the geometrical aspect ratio atΓ = 4.12 × 10−3

(value indicated by a vertical dashed line in Fig. 6) and concentration varied from 0 up to 2000 wppm
for both polymers. The concentrations are reduced to intrinsic viscosity [η0], as defined in Section 3.



F. Varela Ĺopez et al. / J. Non-Newtonian Fluid Mech. 103 (2002) 123–139 133

Fig. 6. (a) Log–log plot of the threshold valueCa∗ vs. the aspect ratio of the cellΓ . (�) Newtonian solvent; (�) Xanthan solution
2000 ppm; (�) PAAm solution 3000 ppm. Dotted vertical line corresponds toΓ = 4.12× 10−3, the value at which criticalCa∗

vs. polymer concentration has been measured (Fig. 7); (b) comparison between our data (filled symbols) and (�) [21]; (�) [20];
(�) [18] and (�) [24].

Determination of threshold has been conducted using the same technique as before (Section 2). Critical
Ca is reduced to the Newtonian valueCa∗

N = 0.175. These results are presented in Fig. 7.
The results for Xanthan (Fig. 7a) show that in the dilute regime threshold remains almost constant at

Newtonian value. IncreasingC above the dilute regime generates a threshold drop which continues until
it saturates at about 80% of Newtonian value. This saturation occurs at [η0]C ∼ 2 (300 wppm). It must be
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Fig. 7. Evolution of the threshold valueCa∗ atΓ = 4.12×10−3 (b0 = 0.4 mm) vs. the reduced concentration [η0]C. (a) Xanthan
solutions; (b) PAAm solutions.

noted that this effect is closely related to effective viscosity, since it is not above this concentration that
shear-thinning effects are significant (at the shear rates involved near threshold). Velocities at threshold
varied from 11 to 3 cm/s.

PAAm, on the other hand, behaves in a different way (Fig. 7b): threshold is monotonically reduced as
concentration increases. This drop occurs even for the lowest concentrations. At higher concentrations,
threshold is reduced, but less efficiently. On one hand, this might be correlated with the differences
observed in normal stress measurements at low and high concentrations (Fig. 4b). On the other hand, as
threshold is reduced, so does shear rate: velocity drops from 11 to 3 cm/s. As a consequence elastic effects
become less effective and viscosity increases, overestimatingCa∗. Up to the concentrations explored, no
saturation effect has been observed.

4.3. Amplitude of the wave forms near threshold

Above threshold, a regular pattern appears at the interface, as shown in Fig. 8, for different liquids. A
detailed description of Newtonian finger shapes formed by ribbing instability can be found in [39].
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Fig. 8. Pictures of the interface below and above threshold (increasingCa from up to down). On each picture, air is on the upper
side. Minimum gapb0 is exactly located at the lower boundary of each frame (b0 = 0.4 mm). (a) Glycerol solution (Ca= 0.210,
0.226, 0.262, 0.425); (b) Xanthan 1000 wppm (Ca = 0.076, 0.123, 0.155, 0.338); (c) PAAm 1000 ppm (Ca = 0.110, 0.124,
0.154, 0.165).

In all cases, forCajust above threshold, the shape of the interface is sinusoidal, regardless of rheological
properties of the fluid. This is in agreement with non-linear single-mode Landau theory. Furthermore, the
wavelength is comparable to Newtonian case as well. Nevertheless, further development of the pattern
shows a strong dependence on rheology that separates from Newtonian behavior. In the case of Xanthan,
it is only at higherCa values that a sharp-peaked structure appears at the air–liquid fingertip, while
liquid walls remain almost unchanged (Fig. 8b). Amplitude of the fingers, as well as its wavelength,
is quite similar to those obtained in the Newtonian case. For PAAm, a triangular, saw-toothed pattern
appears as soon asCa is increased above threshold (Fig. 8c). Both amplitude and wavelength are much
greater than the ones obtained for inelastic liquids. This is reminiscent of the growth of viscoelastic
Saffman–Taylor fingers reported recently by Lindner [38], due to normal stresses acting on the coated
film. Similar saw-toothed films have been reported previously by Grillet et al. [21] with a viscoelastic
fluid. Another important fact concerning threshold can be seen in Fig. 8. The first frame in each column
corresponds to the meniscus atCa slightly lower thanCa∗. While for Xanthan there is no significant
change in position with respect to the Newtonian case, for PAAm the (stable) meniscus position near
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threshold is shifted away near 40%, from the prescribed Newtonian value equal to 2.12 (in units ofΛ)
[40]. This is an evidence of the non-Newtonian effects on base flow. Indeed, this meniscus displacement
can be related to normal forces, as in die swell phenomena. The effect of meniscus shift on threshold
drop is not completely clear, but this effect could indicate a change on film thickness on the cylinder.

Amplitude near threshold was measured in all cases. In Fig. 9, amplitude,ξ = A/Λ of the pattern for
different concentrations is plotted as a function ofCashowing the differences obtained from inelastic and
elastic solutions. In the inelastic case, it seems that amplitude follows the same tendency as Newtonian

Fig. 9. Dimensionless amplitude of the wave form as a function ofCa (a) Xanthan; (b) PAAm. Hollow symbols represent
Newtonian case.
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case: amplitude growth and saturation remains similar. On the other hand, for PAAm solutions, these
curves cannot be merged into a master curve by simply scalingCaby the onset valueCa∗.

5. Discussion

In this work we reported the decrease of ribbing instability threshold, observed in non-Newtonian
flows. It have been shown that shear-thinning solutions of Xanthan and PAAm were destabilized at a
capillary numberCa∗ lower than the value expected, even after first-order corrections on viscosity were
made. In the case of inelastic solutions, this effect is directly related to effective viscosity. In the dilute
regime, where shear-thinning effects are not measurable, no significant drop could be ascertained. It is
only at higher concentration that a change in threshold conditions could be noticed. This effect can also be
seen in Fig. 6a: as aspect ratio is reduced, from 10−2 to 10−3, Ca∗ approaches the Newtonian limit. This
can be explained as follows: as aspect ratio is reduced, shear stresses become more important, shifting
effective viscosity towards the Newtonian high-shear plateau. Viscosity gradients become less important
throughout the nip, and the Newtonian result is retrieved. A correct evaluation of shear stresses through
the nip near threshold, and the determination of the effect of viscosity differences near threshold will
permit the introduction of second-order corrections toCa in order to completely understand the effect of
purely viscous non-Newtonian fluids on ribbing instability threshold.

The motivation for conducting the experiments shown in Fig. 7 was the spectacular threshold drop
observed in the case of viscoelastic fluids, at a relatively high polymer concentration, shown in Fig. 6.
Previous results of Bauman et al. [18] suggested that this occur even at low concentrations. Our results
confirm this, since a significant threshold reduction occurs at concentrations lower than the semi-dilute
limit. Above this,Ca∗ values keeps reducing at a smaller rate, showing that the increase in polymer
concentration in the semi-dilute regime introduces non-linearities in the behavior of the polymer solution
under shear. The complexities arising from this coupling between effective viscosity and normal stresses
was pointed out early by Greener and Middleman [14] in the case of film thickness determination. This is
put in evidence in Fig. 4b, where first normal stressN1 behaves distinctly above and below the semi-dilute
limit. This provides evidence that first normal stress differenceN1 is behind the mechanism of elastic
ribbing instability. If this is the case, it is clear that capillary number would be no longer the correct control
parameter of this instability, and thus the onset could not collapse on a singleCa∗–Γ master curve.

There is not a common sense about the reason for such destabilizing effect. Bauman et al. [18] ascribed
the decrease of onset for viscoelastic fluids to elongational viscosity effects in the bulk of the solution,
while other authors (Ro and Homsy [16]) found similar behaviors when only normal stress effects at
the interface are taken into account. More recent experimental results are in agreement with our results
concerning the influence of geometrical aspects, even working at very different geometries under varying
conditions, as can be seen in Fig. 6b. Dontula et al. [20] underestimate the role of elongational viscosity
on ribbing threshold, formerly reported by Fernando and Glass [19] as a cause for the change on ribbing
pattern in forward roll coating. There is very few predictions on wavelength at threshold. We did not
observe a significant increase in wave number as reported in there work. Grillet et al. [21] found some
evidence that elongational effects are responsible for the changes in shape, similar to the one shown in
Fig. 8. In their work an elastic parameterN, defined as the ratio ofWe/Ca is defined to quantify the elastic
effects present. Unfortunately, in our case shear thinning effects makes this definition rather cumbersome,
since it becomes a function of velocity.
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To clarify the physical origin of the efficiency of elasticity in decreasing the onset, more theoretical
and experimental studies are necessary. Meniscus position near threshold, as well as film thickness on the
walls, plays an important role in its determination, since it is closely related to the boundary conditions
at the interface. In the Newtonian case, the meniscus position is determined from a balance between the
incoming flux in the gap and the outcoming flux at the walls. The change in meniscus position observed
in viscoelastic fluids must be related in some way to the threshold drop observed in these systems, both
being due in part to elongational effects near stagnation lines or to normal stresses preventing the interface
to recede further upstream. Experimentally the study of the position of the downstream meniscus below
and at threshold for various concentrations and fluid nature could thus give valuable information on
the basic flow and on normal stress effects at the interface. Moreover, the study of the critical capillary
numbers when both cylinders rotate (already well documented for Newtonian fluids [6,36]) could be
another fruitful way of investigation.
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