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Motions of anisotropic particles: Application to visualization
of three-dimensional flows

G. Gauthier,a) P. Gondret, and M. Rabaud
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F-91405 Orsay Cedex, France

~Received 9 December 1997; accepted 12 May 1998!

The aim of the paper is to get insight into flow patterns visualized by suspended anisotropic
reflective particles. The motion of triaxial ellipsoids embedded in a three-dimensional flow, i.e.,
which cannot be reduced to a local plane Couette flow, is calculated. Both the asymptotic trajectory
and the transient time to reach it are discussed. These results are used to simulate laser sheet
visualizations of two classical three-dimensional flows~Taylor–Couette vortices and flow between
rotating disks! where the particle history is shown to be negligible. The simulated visualizations are
well compared to experimental ones but the paper addresses the fact that the legitimate question of
what shows the visualization does not have a simple answer. Nevertheless, these results open the
way for quantitative comparisons between computational fluid dynamics and experimental
visualizations. ©1998 American Institute of Physics.@S1070-6631~98!01409-3#
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I. INTRODUCTION

For many years, nonaxisymmetric particles have b
used at low concentrations to visualize liquid flows. The
small particles, having almost the same density as the
rounding fluid, are oriented by the flow and can transmit
reflect incident light differently from place to place thus r
vealing the structure of the flow. Classically used partic
are aluminum, coated mica flakes, or commercial produ
such as Iriodin1 or Kalliroscope.2 Nice examples of such
visualizations can be found in the book of Van Dyke.3 This
visualization technique presents the advantage of giv
strongly contrasted images in closed geometries and u
permanent conditions even with very small particle conc
tration. It has been extensively used, e.g., for the study of
dynamic regimes of Taylor–Couette flow4,5 or more recently
for the study of small scales of turbulence.6,7 Indeed, when
the density of the particles is comparable to that of the flu
the particles are advected at the fluid velocity. The part
Reynolds number, i.e., the one built with the particle size a
shear rate, is then small even if the flow Reynolds numbe
large. Details about the size, density, and reflective inde
the particles can be found in various textbooks or for K
liroscope in the article of Matisse and Gorman.8 The possible
unwanted effects of adding such particles have been
cussed by Dominguez-Lermaet al.9 If one takes into accoun
this broad utilization and the number of nice works based
this technique, it is surprising that very few authors we
concerned by one essential question: ‘‘What do these an
tropic particles show exactly?’’ To our knowledge the on
study trying to answer this question is the one of Sava10

who assumes that thin axisymmetric particles align the

a!Electronic mail: gauthier@fast.u-psud.fr; Telephone: 33-1 69 15 80
Fax: 33-1 69 15 80 60.
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selves onto the ‘‘stream surfaces’’ in the case of plane C
ette flow. He then calculates the reflected light intensity
the flow existing far above a rotating disk, where it can
approximated locally by an unidirectional flow. Under th
assumption, it is possible to follow the orientation of a pa
ticle along a streamline. Subsequently, most authors dea
with other flow visualizations just mention that the flakes a
oriented in the ‘‘stream surfaces’’6,7,11although this notion is
not defined for nonunidirectional flow. Indeed, in gene
three-dimensional~3-D! flows, the flow cannot be reduce
locally to a plane Couette flow. Even if the orientation m
tion of anisotropic particles in a viscous fluid has been
tensively studied, most of the authors were concerned on
one hand by the possible effect on suspension rheolog
larger concentration,12 and on the other hand by the chara
terization of the particles by birefringence properties.13 The
aim of this paper is to compute the orientation motion
isolated nonaxisymmetric particles in a general 3-D flow
order to point out the link between the visualizations and
velocity fields.

In Sec. II we briefly recall the analytical results for th
motion of axisymmetric particles. Section III is devoted
the numerical simulation of the motion of a triaxial partic
in a general 3-D flow. Section IV deals with the simulatio
of the flow visualization with anisotropic particles and i
comparison with experimental visualization for two classic
stationary axisymmetric 3-D flows~Taylor–Couette flow and
the flow between rotating disks with separated boundary
ers!.

II. MOTION OF AXISYMMETRIC ELLIPSOIDS

The first and fundamental work was done by Jeffery
1922,14 who analyzed the motion of one rigid isodensity e
lipsoid in a general viscous flow. The particle is consider
to be small enough so that the Reynolds number based o

;

h
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length and on the typical shear remains small. Brownian m
tion is neglected as any body forces. The first result of J
fery is that, to the leading order, it is not necessary to t
into account the flow modification around a particle and
the torques undergone by any isolated triaxial ellipsoid
the same as those given by the unperturbed velocity field
each time, the motion of the particle is the sum of a trans
tion and of an instantaneous rotation vectorv which governs
the orientation of the particle. The components of this vec
v in the frame of the particleare:

v15
b2G3,22c2G2,3

b21c2
,

v25
c2G1,32a2G3,1

a21c2
, ~1!

v35
a2G2,12b2G1,2

a21b2
,

where the indices 1, 2, and 3 refer to an orthonormed fra
of reference, calledL, built on the axesa, b, andc of the
ellipsoid. The termGi , j5]Vi /]xj is one of the nine terms o
the velocity gradient tensorG which characterizes the flow
in that frame. For a general 3-D flow this tensor has th
nonzero eigenvalues.

To go further, Jeffery focuses on axisymmetric ellipso
(b5c). In that case only one geometrical parameter, the
pect ratior 5a/b, is necessary to describe the particle. T
caser .1 corresponds to prolate spheroids andr ,1 to ob-
late spheroids. Later, Leal and Hinch15 expressed the work o
Jeffery in a more compact form. The orientation of the p
ticle is then given by the time evolution of a unit vectorp
parallel to the particle symmetry axisa:

dp

dt
5V–p1

r 221

r 211
@E–p2p–~p–E–p!#, ~2!

whereV andE are, respectively, the vorticity tensor and t
rate-of-strain tensor~respectively, antisymmetric and sym
metric parts of the velocity gradient tensorG!. Note that Eq.
~2! is only valid in the frameL of the ellipsoid. The first
term on the right-hand side is the usual rotation due to v
ticity, the first term in brackets is the rotation induced by t
elongational nature of the flow for a nonspherical parti
(rÞ1), whereas the last term just ensures the norm con
vation of p. So in Eq. ~2!, all the orientation dynamics is
contained in the evolution tensorj:

j5V1
r 221

r 211
E. ~3!

In the case of a simple stationary shear flow of shear
g, Jeffery has shown that equations of motion can be in
grated and that the particles experience periodic closed o
with a periodT5(2p/g)(r 11/r ). This family of orbits is
parametrized by a constantC (0<C<`) which comes from
the initial orientation of the ellipsoid. Thus, a particle nev
forgets its initial orientation. For any initial orientation, th
extremity of p describes a closed orbit around the vortic
-
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axis ~z axis! as follows: close to this axis ifC is small orr
large, and close to the shear plane~xOyplane! if C is large or
r small ~Fig. 1!. A disk-like particle~r small! spends most of
its time with p along the shear axis~y axis! whereas for a
rod-like particle~r large! it is along the flow axis~x axis!. In
both cases, the particles flip rapidly, with the time sc
2p/g, in the shear plane. These motions have been chec
quantitatively in the experiments of Goldsmith and Mason16

The effect of Brownian motion on these orbits was i
vestigated theoretically by Leal and Hinch17 for such a plane
Couette flow acting on spheroids~with r close to 1!. For a
diffusion constant of the orientation18 low compared to the
shear rate, these authors show that there exists a sm
selection process that slowly orients the particles in the
cinity of one particular Jeffery orbit selected by the value
the aspect ratior. Thus, because of the Brownian force
every particle slowly lose the memory of their initial orien
tation.

These Jeffery orbits are quite specific to the plane C
ette flow. In 1962, Bretherton addressed the motion of
axisymmetric body in any three-dimensional flow.19 As all
the dynamics in the frame of the particle is contained in
evolution tensorj @Eq. ~3!#, it is sufficient to study the evo-
lution of a vectorp̂ which is parallel top but does not con-
serve its norm. Being interested in the stationary orientat
motion of the ellipsoid, Bretherton looks for thep̂ eigenvec-
tor of j. For any velocity field, the characteristic polynomi
is of third order with real coefficients. Thus, there are eith
three real eigenvalues or a real and two complex conjug
ones and as the fluid is incompressible, the sum of the eig
values is zero. The nature of the eigenvalues determines
asymptotic trajectory of the axis of revolution, the transie
time to reach it, and the period of rotation. When one of
real parts of the eigenvalues is larger than the two others,
vector p aligns in the direction of the corresponding eige
vector. Thus the particle will keep a constant orientati
which depends on its aspect ratior. If the two larger real
parts of the eigenvalues are equal the dynamics depend
the imaginary parts. First, if they are zero the particle a
evolves into a fixed direction which depends here on its
tial orientation~this case has not been described by Breth
ton!. Second, if the imaginary parts are nonzero~thus they
are equal and of opposite sign! the p axis rotates in a plane
generated by the real and imaginary parts of the two co
sponding complex conjugate eigenvectors. Finally, if t

FIG. 1. A set of Jeffery orbits~trajectories of the extremity ofp for an
axisymmetric particle rotating in a plane Couette flow (ux5gy) for C
50.1, 1, and 10, andaspect ratior 510 ~a! and forC51, andr 50.1, 1,
and 10~b!. Analytical results and simulation~Sec. III A! are superimposed
on these curves but cannot be distinguished.
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three real parts of the eigen values are zero, the axis of r
lution p describes a nonplanar closed curve that depend
its initial orientation. This case occurs only for purely rot
tional flow or plane Couette one. The case of Jeffery’s orb
is just a particular case of this last category. In all cases
transient timet is given by the inverse of the largest real pa
of the eigenvalues, whereas the period of rotation T is gi
by the inverse of the imaginary part.

Since these pioneering works, other effects have b
taken into account: the time dependence of the flow,20–22

large particle concentration,23,24 deformable particles,25,26

and inertia.27 To our knowledge, the only papers dealin
with nonaxisymmetric particles correspond to plane Cou
flow.28,29These authors showed that this motion is compo
of a rapid rotation around Jeffery orbits, and a slower pe
odic drift leading to a change of orbit. Recently it has be
shown that chaotic drifts could exist in that case.29

III. MOTION OF TRIAXIAL ELLIPSOIDS

For a general triaxial ellipsoid, there is no theoretic
prediction for its motion in a general 3-D flow. We the
calculate this motion by using Jeffery’s equations@Eq. ~1!# in
order to shed some light on trends that are useful for vis
ization.

A. Outline and validation of the calculation

In this section we assume a constant velocity grad
tensorG0 in the laboratory frameL0. As Eq. ~1! gives the
instantaneous rotation vectorv in the frame of referenceL
of the particle, we first computeG in L. At time t, knowing
G, we calculatev by Eq.~1!. We compute by Euler steppin
the new orientation of the particle using the rotation mat
R based onv and the time stepDt. From this new orienta-
tion at timet1Dt we then compute the new tensorG8 by the
relation G85R21GR and the process is repeated for ea
time step. The time stepDt is small enough ifDt!1/ivi . In
a Couette flow, a constant time step can be used and
chooseDt50.01/g in order to describe well the rapid flips
In a general 3-D flow, sinceG and henceivi depend on the
orientation, we must calculate at each instant the time s
Dt50.01/ivi .

We have first checked the computation for axisymme
particles in a plane Couette flow: For various initial orien
tions of the particle and any tested aspect ratio~0.1,r
,10), the agreement is perfect with the theoretical Jeffer
orbits ~Fig. 1!. We have also checked that the calculation
an axisymmetric ellipsoid in a general 3-D flow is in agre
ment with Bretherton predictions: For various random te
sorsG0, we observe that eitherp evolves in a fixed direction
or this vector rotates in a plane. Note that these two beh
iors can also be obtained with the same flow~the sameG0)
but by varying the particle aspect ratio. In most cases lo
particles align themselves along fixed directions wher
disks rotate. In each case we checked that the eigenva
indeed govern the corresponding asymptotic trajectory
the transient time to reach it.
o-
on

s
e

t
n

n

te
d

i-
n

l

l-

t

e

p

c
-

’s
r
-
-

v-

g
s
es
d

B. Behavior of nonaxisymmetric ellipsoids

For a non-axisymmetric ellipsoid, one can define tw
aspect ratiosr 15b/a and r 25c/a. Then Eq.~1! may be
written as

v55
V3,21

r 1
22r 2

2

r 1
21r 2

2
E3,2

V1,31
r 2

221

r 2
211

E1,3

V2,11
12r 1

2

11r 1
2

E2,1.

~4!

We choosea>b>c, for which r 2<r 1<1. All the simu-
lations computed with different aspect ratios and differe
tensorsG0 point out that even nonaxisymmetric ellipsoid
reach an asymptotic trajectory after a transient timet.

We first study the asymptotic trajectories of an ellipso
which is gradually deformed from a long prolate spheroid
a thin oblate one. We thus varyb from c to a (r 2 is constant
and r 1 varies betweenr 2 and 1!. We study the trajectory of
the extremity of a unit vectorp parallel to thea axis ~the
largest one!, which is the axis of revolution whenr 15r 2. In
Fig. 2, we present the projection of these trajectories in
plane xOy for a given tensorG0.30 For each aspect ratio
betweenr 150.1 and 0.9, the extremity ofp precesses, bu
all the curves pass through one point and remain close
~Fig. 2!. The amplitude of the precession~measured as the
square root of the area! increases linearly with the aspe
ratio r 1 although the periodTp remains constant. Note tha
the precession amplitude is very small compared to un
meaning that the motionof the greatest axisis almost the
same as for a prolate spheroid even when the ellipsoi

FIG. 2. Projection in thexOyplane of the extremity of the unit vectorp for
a nonaxisymmetric ellipsoid with various aspect ratior 1 and fixed r 2

50.1 in a generic three directional flow. Forr 150.1 ~long prolate spher-
oid!, the p direction is fixed~large point inx5y50). For anyr 1 value
between 0.1 and 0.9 (r 150.3, 0.5, 0.7, 0.8) theprojection corresponds
to a unique closed curve~—! including the previous fixed point. The am
plitude of the precession increases but remains small~note the magnified
scale compared to unity!. For r 150.95, thetrajectory is biperiodic~---!.
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closer to an oblate one. Forr 150.95, thetrajectory becomes
biperiodic and asr 1 approaches 1, the trajectory is more a
more complicated. Forr 151, we have checked that the tra
jectory of axisc is a circle in a particular plane: this agre
with Bretherton’s predictions for an oblate spheroid. Th
description presented forr 250.1 remains true for other val
ues ofr 2.

An important result for the particle dynamics and th
for visualization purposes is the time necessary to reach
asymptotic trajectory. Such information for axisymmet
particles is given by the eigenvalues ofj @Eq. ~3!# and was
also estimated by Weidman31 in a plane Couette flow. We
study the transient for nonaxisymmetric particles by vary
r 1 and r 2. The evolution toward the asymptotic trajecto
appears as exponential and we determine the characte
time t for one flow G0 and one initial particle orientation
~Fig. 3!. The main conclusion is thatt decreases for smallr 1

or small r 2. Thus thin or long particles more rapidly reac
their asymptotic trajectories. The transient time is short, ty
cally of the order of a few percent of the period of rotatio

C. Concluding remarks for visualization purposes

We will now focus on general remarks useful for vis
alization with anisotropic particles.

On the one hand, the often encountered idea that
particles are oriented in the ‘‘stream surfaces’’6,7,11 only
holds for, at least locally, plane Couette flow. Indeed, s
tionary orientation is only one of the possible asympto
trajectories, and the others are time dependent trajecto
no stationary orientation is reached and the particles ro
with more or less complicated trajectories. The relation
tween visualizations and underlying velocity fields is th
not straightforward. In particular, since the particle orien
tion just gives access to one of the three eigenvectors of
velocity gradient tensor, it is not possible to reconstruct co
pletely the velocity field from the observed light.

FIG. 3. For nonaxisymmetric ellipsoids of various aspect ratior 1 ~0.2, 0.4,
0.6, 0.8!, evolution of the transient timet to reach the asymptotic trajectory
vs the aspect ratior 2 ~logarithmic scale!. The same generic three
dimensional velocity gradientG0 ~Ref. 30! and the same initial orientation
have been used. The timet is made dimensionless by the asymptotic peri
of precession Tp of such particle inG0. The continuous lines are a guide fo
the eyes.
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On the other hand, the motion of anisotropic particles
a general flow involves different time scales which have
be compared. Let us first present or recall these differ
time scales.

We have already introduced the period of rotationT of
the particle on its asymptotic trajectory, and the transi
time t necessary for the particle to reach this asympto
trajectory. When particles are advected in a real flow, th
are submitted in their Lagrangian frame to a velocity gra
ent tensorG which is, in general, time dependent. This tim
dependence ofG is due either to a time dependence of t
Eulerian velocity field~unsteady flow! or to spatial variations
of the steady velocity field, and one can so define a ti
scale of evolution ofG in the frame of the particle and de
note this timetG . Since the anisotropic particles used
visualization are generally rather small, Brownian moti
must be taken into account. Following Perrin,18 one can de-
fine the time scaletB for the particles to lose their orientatio
by diffusive process.

When the Brownian timetB is much larger than the tran
sient time t of orientation, the fading effect of Brownian
motion can be reasonably neglected; the particle motion
then deterministic and the particle history should in princip
be taken into account as noted by Savas.10 However, when
the transient timet necessary for the particle to reach i
asymptotic trajectory is sufficiently small compared to t
time scaletG of evolution ofG in the frame of the particle,
an ‘‘adiabatic’’ approximation can be used. As shown in t
preceding section, this condition will be all the more satisfi
since particles are thin. Nevertheless the relevance of vis
izations with anisotropic particles in turbulent flows6,7 where
tG is certainly small may be questionable, especially for
characterization of the small scale structures of the flow.

IV. VISUALIZATION USING ANISOTROPIC
PARTICLES

We will now use the results of the dynamics of nona
symmetric particles previously presented in order to simu
the light reflected by the particles in a real flow. In the sim
lation we consider monodisperse triaxial ellipsoids which
not interact and we neglect inertia, gravity, and Browni
motion as well as particle history. We will compare the r
flected light computed from numerically simulated veloc
fields with experimental visualizations. We choose to foc
on two particular flows, which are three dimensional but a
symmetric and stationary, lighted by a radial laser sheet:
Taylor vortex flow and flow between rotating disks. How
ever, the method presented here could be extended to
flow and any light disposition.

We first describe the experimental visualizations~Sec.
IV A !, then the simulated ones~Sec. IV B!, and then a com-
parison between the two is made~Sec. IV C!.

A. Experimental visualizations

Flow visualization using reflective flakes are common
used in experiments. We performed experiments with Irio
pigments1 and Kalliroscope flakes2 embedded in a water–
glycerol mixture. Kalliroscope particles are platelets made
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guanine ~1.66 g cm23 in density!. A mean size of 3036
30.07 mm can be found in the literature as well as th
reflective index of 1.85.2,8 We have checked under a micro
scope that they are indeed very thin but they are also v
polydisperse~Fig. 4!. Iriodin pigments are platelets made
the natural mineral mica coated with a metallic oxide~3 g
cm23 in density! with a typical length less than 15mm. Due
to their small sizes, the sedimentation time in water is la
~typically a few hours for 1 cm!. We obtained similar image
with both products but more contrasted ones with Kalli
scope. This may be related to our conclusion in Sec. II
since Kalliroscope flakes are much thinner than Iriodin on
In the following, we focus on Kalliroscope visualization
The particle concentration of the manufactured solution
not known. By an observation under microscope after d
tion ~Fig. 4! and also by weighting the dried part, we es
mate the initial concentration to be 106 flakes/mm3. Well
contrasted visualizations are obtained for a volume frac
of 1025, leading to an averaged distance between the
ticles ten times greater than their largest size. The inte
tions between particles can then be neglected.32

In both experimental setups~concentric cylinders or par
allel disks! the flow is mainly orthoradial and we use a rad
laser sheet, of thickness 1 mm, transverse to the gap. T
the streamlines are almost perpendicular to the laser sh
Figures 5~a! and 7~a! exhibit two typical experimental visu
alizations of such flows. Brighter domains are due to p
ticles which are conveniently oriented or rotating wh
crossing the laser sheet in order to reflect light in the cam
direction. The camera is oriented at 45° with respect to
normal to the sheet, in a plane generated by the normal to
sheet and a direction parallel~respectively, orthogonal! to the
axis of rotation in the case of parallel disks~respectively,
concentric cylinders!. The angular aperture of the camera
of the order of 5°, and the exposure time is 1/25 s. Such la
sheet visualization is not classical in a closed geometry. U
ally, this technique is used in open flows in order to obse

FIG. 4. Photograph under microscope~100 mm 3 100 mm! of a concen-
trated solution of Kalliroscope particles. Note the strong polydispersity
the low contrast due to the low relative reflective index in a water–glyce
mixture.
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the advection of a passive scalar.33 In our flow configura-
tions, information is only given by the orientation of th
particles. Indeed, we checked that the reflected light inten
is homogeneous and no structures are observed when u
isotropic particles such as Estapor.34

B. Simulated visualizations

Both flows were simulated by aCFD code in a radial
plane. For the Taylor–Couette cell, the lattice is 34340 for
two wavelengths and a periodic boundary condition has b
applied. Only the inner cylinder rotates and the Taylor nu
ber is Ta56100, roughly three times the onset for the appe
ance of Taylor vortices.5 For the rotating disks geometry, th
simulation has been made with a 1024364 lattice and under
the same conditions as in the experiments: an aspect
R/e510 and a Reynolds number Re5Ve2/n5300, below
the onset of propagative circles or spirals but correspond
to separated boundary layers.35

In both cases, the velocity gradient tensorG0 is calcu-
lated at each lattice node. During the particle advect
across the laser sheet, we check that the particle remain
the same node since the velocity is mainly orthoradial. Th
within our resolution, the particle is submitted to a consta
tensorG0 during its crossing. We also check that we c
neglect particle history. In any node, we compute the tr
sient timet necessary for the particle to reach its asympto
trajectory and compare this time to the advection timetL

across the sheet. The ratiot/tL is found to be small almos
everywhere. Finally, we check that, since the particles
very thin, the real size is not a sensitive parameter for
asymptotic trajectory. We thus neglect polydispersity and
sume monodisperse ellipsoids of axes~a, b, c! 5 ~30, 6,

d
l

FIG. 5. Visualization of a radial laser sheet in a Taylor vortex flow: expe
ment~a! and simulation~b!. The inner cylinder~to the left! rotates whereas
the outer one~to the right! is fixed. The Taylor number of the flow is quite
above the critical one corresponding to the appearance of Taylor vortice
the experiment,R1534 mm, R2536 mm, V150, V2511.6 rad s21, Ta
59100. In the simulation,R1534 mm, R2535 mm, V150, V2513.4
rad s21, Ta56100.
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0.07! mm. For such thin particles the timetB to lose their
orientation with an angle equal to the camera aperture is
our viscous fluid, of the order of 13 s. Thus, astB@t and
tB@tL , the Brownian motion has been also neglected.

At each node, we draw the orientation of one particle
random and we apply to it the torques it experiences du
its advection timetL across the laser sheet. We compute
proportion of time where the particle is well oriented in ord
to reflect light in the camera direction within the angu
resolution of the camera. As we assume the flakes ac
small mirrors, it is the orientation of the smallest axisc that
we test. The light intensity at the corresponding node~or
pixel! is then rescaled with the exposure time of the came
However, when the period of rotationT of the particle on its
asymptotic trajectory is not small compared to the advec
time tL across the laser sheet, the fraction of reflected li
depends on the initial particle orientation when it enters
laser sheet. Thus, at each node corresponding to this cas
choose to draw several randomly oriented particles mapp
the sphere unity and let them reach their asymptotic tra
tory during a given time. In our simulation we draw at lea
400 particles, this number corresponding to a mapping of
sphere of unit radius with the resolution given by the ap
ture angle of the camera~6 5°!.

Finally, we reconstruct a two-dimensional image by c
lecting the light intensity at each node~pixel!. In order to
compare quantitatively the results with the experiments,
introduce ana posteriori attenuation of the intensity due t
light absorption of the fluid. We use a Beer–Lambert’s11 law
consisting in an exponential attenuation with a constant s
z0, neglecting here any effect of the orientation. The sim
lated images are presented in Figs. 5~b! and 7~b!. These two
images are in good agreement with the experimental o
@Figs. 5~a! and 7~a!# when the Beer–Lambert lengthz0 is
adjusted to 17 mm.

C. Comparison between simulation and experiment

For the Taylor–Couette flow, even if the simulation a
the experiment are not at the same Taylor number, the s
general features can be observed in Figs. 5~a! and 5~b!:
There is no reflected light in the core of the vortices and o
the vortices of a given sign reflect light at their periphe
This simple visualization demonstrates clearly that the fla
are not ‘‘pasted’’ on the vorticity tubes contrary to the oft
encountered idea. Indeed, we have checked in the simula
that the light reflected for the Taylor vortices is generated
rotating Kalliroscope particles. The light intensity profile
corresponding to a vertical line in the middle of the gap
compared in Fig. 6~a!. Although the brighter experimenta
domains are larger, the agreement between the two curv
rather good. The corresponding numerical radial velocity
given, in Fig. 6~b!, for a comparison with the phase of th
pattern.

For the flow between rotating disks, we distinguish thr
bright bands in both experimental and simulation visuali
tions ~Fig. 7!. For a more quantitative comparison, a vertic
section of both pictures is shown in Fig. 8~a!. The lighting
being from above the light intensity decreases along
or
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depthz due to the light attenuation. The two curves are
good agreement. A thin bright strip is localized close to ea
disk and a large bright band lies in the middle of the ga
The comparison between the visualization and the numer
velocity field @Fig. 8~b!# allows us to interpret each of th
bright regions we observed. The bright strips close to
disks @Figs. 7 and 8~a!# correspond to the boundary laye
where the azimuthal velocity varies rapidly along the de
@Fig. 8~b!#. These boundary layers, called Ekman a
Bödewadt layers, are classical in such a flow configuration36

The thick bright center tongue@Figs. 7 and 8~a!# corresponds
to a fluid core rotating nearly as a solid body, i.e., to a reg
where the azimuthal velocity is almost constant@Fig. 8~b!#.
Note that the center large bright band between the disk
generated by particles having fixed orientation whereas

FIG. 6. ~a! Normalized light intensityI /I max as a function ofz/l ~wherel
is the wavelength! corresponding to a vertical profile at the radiusr 5(R2

2R1)/2 of Fig. 5: experiment~—! and simulation~j!. ~b! Numerical nor-
malized radial velocityVr /Vrmax ~—! as a function of the depthz/l for a
vertical profile at the same radius. Courtesy of H. Bellili.

FIG. 7. Visualizations of radial laser sheet in the flow between two rotat
disks: experiment~a! and simulation~b!. In both cases, the axis of rotatio
is at the left and the top disk~together with the external wall! is rotating
counterclockwise, when seen from above and the bottom disk is at rest.
radius of the disks isR5140 mm and the gap thickness ise514 mm. Only
a part of the cavity is presented (r left50.4 R, r right50.6 R!. For both pic-
tures the Reynolds number based on the gap thickness is Re5Ve2/n
'300. The experimental picture corresponds to an average over 20 pic
in order to increase contrast.
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bright strips close to the disks are generated by rotating K
liroscope particles. This rotating behavior is characteristic
3-D flow. The boundary layers determined by our simulat
of reflected light are well located and we have checked
they scale as (n/V)1/2 as expected in such a rotating setup37

This result was not observed in previous simulated visual
tions of the flow over a rotating disk,10 since they were base
on a local plane Couette flow approximation.

V. CONCLUSION

In the present paper, we have investigated the orienta
of a triaxial ellipsoid in general 3-D flows. Two main resul
have been exhibited. First, the nature of the asymptotic
tion is controlled by the dynamics of its largest axis with
small precession induced by the nonaxisymmetry of the p
ticle. Thus visualization using anisotropic particles is not
inverse method: From the observed light, it is not possible
reconstruct the velocity field. Second, the transient time
found to be smaller when one or the two aspect ratios are
from unity ~long rods or thin disk!. This value of the tran-
sient time compared to the time scale of the flow is import
to determine whether or not the particle is an instantane
tracer of the local property of the flow. These results ha
allowed us to build a simulation of the light reflected b
anisotropic particles in general 3-D flows. We have appl
this simulation in the case of laser sheet visualizations of
classical flows: Taylor vortices and flow between rotati
disks. The agreement between the simulated visualizat
and real ones is good, showing that the main parameters
been taken into account and that polydispersity, Brown
motion, and as well as particle history are not importa
Moreover, in the case of the Taylor–Couette flow, we ha
shown that the particles are not ‘‘pasted’’ on the vortices,
that the observed light is due to rotating particles. For

FIG. 8. ~a! Normalized light intensityI /I max as a function of the heightz
corresponding to a vertical profile of Fig. 7 at the radius ofr 50.57R:
experiment~—! and simulation (j). The experimental setup is lightene
from above, so the intensity decreases with the depth. A Beer-Lam
attenuation law has been used in the simulation.~b! Numerical normalized
velocity components as a function of the height z for a vertical profile at
radius r 50.57R: azimuthal velocity Vu /Vu max ~—!, radial velocity
Vr/Vu max ~---!, and axial velocityVz/Vu max ~-•-!. Courtesy of R. Jacques.
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flow between rotating disks, the thickness of the two bou
ary layers is correctly described in our simulated visuali
tion. This shows clearly that the boundary layers can
tracked and that one can have confidence in thickness m
surements with experimental visualizations using anisotro
flakes.

We believe that such simulations will allow a validatio
of a large number of experimental measurements, e.g.,
the wavelength, the spatial or temporal growth rate of
structures, and the co- or contrarotating nature of vortices
the near future, this simulation will allow us to determin
quantitatively the relation between the light intensity and
amplitude of 3-D hydrodynamic instabilities.
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10Ö. Savas, ‘‘On flow visualization using reflective flakes,’’ J. Fluid Mec
152, 235 ~1985!.

11M. Sorrention and S. G. Mason, ‘‘Rheo- and electro-optical behavior
platelets,’’ J. Colloid Interface Sci.41, 178 ~1972!.

12J. Happel and H. Brener,Low Reynolds Number Hydrodynamic
~Martinus-Nijhoff, Dordrecht, 1973!.

13T. G. M. Van de Ven,Colloidal Hydrodynamics~Academic, London,
1989!.

14G. B. Jeffery, ‘‘The motion of ellipsoidal particles immersed in a visco
fluid,’’ Proc. R. Soc. London, Ser. A102, 161 ~1922!.

15L. G. Leal and E. J. Hinch, ‘‘The rheology of a suspension of nea
spherical particles subject to Brownian rotations,’’ J. Fluid Mech.55, 745
~1972!.

16H. L. Goldsmith and S. G. Mason ‘‘Particle motions in sheared susp
sions XIII. The spin and rotation of disks,’’ J. Fluid Mech.12, 88 ~1962!.

17L. G. Leal and E. J. Hinch, ‘‘The effect of weak Brownian rotations o
particles in shear flow,’’ J. Fluid Mech.46, 685 ~1971!.

18F. Perrin, ‘‘Mouvement brownien d’un ellipsoı¨de,’’ J. Phys. Radium5,
497 ~1934!.

19F. P. Bretherton, ‘‘The motion of rigid particles in a shear flow at lo
Reynolds number,’’ J. Fluid Mech.14, 280 ~1962!.

20A. J. Szeri, S. Wiggins, and L. G. Leal, ‘‘On the dynamics of suspend
microstructure in unsteady, spatially inhomogeneous, two-dimensio
fluid flows,’’ J. Fluid Mech.228, 207 ~1991!.

21A. J. Szeri, W. J. Milliken, and L. G. Leal, ‘‘Rigid particles suspended
time-dependent flows: Irregular versus regular motion, disorder versu
der,’’ J. Fluid Mech.237, 34 ~1992!.

22A. J. Szeri, ‘‘Pattern formation in recirculating flows of suspensions
orientable particles,’’ Philos. Trans. R. Soc. London, Ser. A345, 477
~1993!.

23G. G. Lipscomb and M. M. Denn, ‘‘The flow of fiber suspensions

rt

e



-

d

e-

n
tra

es

l

ar

2.

p-

ting
Le
n a

at-

g in

2154 Phys. Fluids, Vol. 10, No. 9, September 1998 Gauthier, Gondret, and Rabaud
complex geometries,’’ J. Non-Newtonian Fluid Mech.26, 297 ~1988!.
24A. Mongruel and M. Cloıˆtre, ‘‘Extensional flow of semi-dilute suspen

sions of rod-like particles through an orifice,’’ Phys. Fluids7, 2546
~1995!.

25W. L. Olbricht, J. M. Rallison, and L. G. Leal, ‘‘Strong flow criteria base
on microstructure deformation,’’ J. Non-Newtonian Fluid Mech.10, 291
~1982!.

26A. J. Szeri and L. G. Leal, ‘‘Microstructure suspended in thre
dimensional flows,’’ J. Fluid Mech.250, 143 ~1993!.

27C. K. Aidun and E. Ding, ‘‘Computational analysis of coating suspe
sion,’’ Proceedings of the Second European Coating Symposium, S
bourg, 1997, edited by P. Bourgin and H. G. Wagner~Strasbourg, in
press!.

28E. J. Hinch and L. G. Leal, ‘‘Rotation of small nonaxisymmetric particl
in a simple shear flow,’’ J. Fluid Mech.92, 591 ~1979!.

29A. L. Yarin, O. Gottlieb, and I. V. Roisman, ‘‘Chaotic rotation of triaxia
ellipsoids in simple shear flow,’’ J. Fluid Mech.340, 83 ~1997!.

30The tensorG0 has been chosen in order to fix the asymptotic station
orientation of p perpendicular to the planexOy when r 15r 25 0.1
~long prolate spheroid!. The corresponding values are: G115212,
-
s-

y

G1252131, G1351/13, G21547, G2257, G235216/29, G315225/13,

G3252100/29 and G3355.
31P. Weidman, ‘‘On the spin-up and spin-down of a rotating fluid. Part

Measurement and stability,’’ J. Fluid Mech.77, 709 ~1976!.
32S. Kim and S. Karrila,Microhydrodynamics, Principles and Selected A

plications ~Butterworth–Heinmann, Boston, 1991!.
33W. Merzkirch,Flow Visualization~Academic, New York, 1987!.
34Estapor, latex particles sold by Prolabo~Rhône-Poulenc Corporation!.
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